Insulin plays vital roles in controlling blood sugar level in the human body. However, it sometimes aggregates during the storage, and its efficacy (on the treatment of diabetes II disease) reduces significantly. So, understanding the insulin aggregation could help in long-term storage. Here we investigate the amyloid growth of human insulin protein in the presence of sugar molecules and observe that glucose and sucrose delay the insulin aggregation, the effect being systematically sugar dependent. We then investigate protein hydration during the aggregation process using terahertz spectroscopy, as the hydration plays a pioneering role in maintaining biological systems. Our study infers that the water network changes systematically with protein conformations and solvation entropy-enthalpy balance plays a decisive role in the aggregation process.

I BUILT MY SITE FOR FREE USING