We investigate the shielding effectiveness and complex conductivity of single-walled carbon nanotubes (SWNT) distributed in a polyvinyl alcohol (PVA) matrix in the THz frequency range. SWNTs are dispersed in PVA matrices with varying SWNT content (keeping the thickness of SWNT/PVA film constant) using a slow-drying method, and terahertz time-domain spectroscopy (THz-TDS) is performed at room temperature in transmission geometry in the frequency range of 0.3–2.1 THz. The transmittance spectra show a possible application of SWNT/PVA composites as low-bandpass filters in the THz frequency region. Shielding effectiveness of all the samples is measured, and, at a particular probing frequency, they tend to follow a linear relationship with SWNT weight fraction in the polymer matrices. THz conductivity of the composite system is described in the light of a.c. hopping conduction.

I BUILT MY SITE FOR FREE USING